Quantum computing

Tom Rochette tom.rochette@coreteks.org

December 21, 2019 - 894d9956

1 Notes

1.10 and 1 cbits (classical bits)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0} \\
& |1\rangle=\binom{0}{1}
\end{aligned}
$$

- Quantum computers only use reversible operations
- Identity and Negation are reversible
- Constant-0 and Constant-1 aare not reversible

1.2 Tensor product of vectors

$$
\begin{gathered}
\binom{x_{0}}{x_{1}} \otimes\binom{y_{0}}{y_{1}}=\binom{x_{0}\binom{y_{0}}{y_{1}}}{x_{1}\binom{y_{0}}{y_{1}}}=\left(\begin{array}{l}
x_{0} y_{0} \\
x_{0} y_{1} \\
x_{1} y_{0} \\
x_{1} y_{1}
\end{array}\right) \\
\binom{1}{2} \otimes\binom{3}{4}=\left(\begin{array}{l}
3 \\
4 \\
6 \\
8
\end{array}\right)
\end{gathered}
$$

1.3 Multiple cbits representation

- This tensored representation is called the product state

$$
\begin{aligned}
& |00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& |01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
|10\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
|11\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
|4\rangle=|100\rangle=\binom{0}{1} \otimes\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

1.4 CNOT

$$
\begin{gathered}
C=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
C|10\rangle=C\left(\binom{0}{1} \otimes\binom{1}{0}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\binom{0}{1} \otimes\binom{0}{1}=|11\rangle
\end{gathered}
$$

2 References

- https://www.youtube.com/watch?v=F_Riqjdh2oM

